Real-World Use Cases
Real-World Applications of RAG Pipeline Utils
This project goes beyond traditional RAG tools — it’s a developer-focused modular framework. Here's how it’s used:
1. Customizable LLM Workflows
Use Case: A team wants to test three different retrievers (Pinecone, Weaviate, Redis) and switch LLMs dynamically during eval.
rag-utils ingest sample.pdf --retriever pinecone --llm openai
2. Plugin-Based Evaluation Benchmarks
Use Case: You want to run BLEU/ROUGE scoring across prompt templates or documents using CLI:
rag-utils evaluate --dataset tests/eval.json --llm anthropic
3. Internal LLM System for SaaS
Use Case: Embed RAG processing into a backend:
import { PluginRegistry, runPipeline } from "rag-pipeline-utils";
const registry = new PluginRegistry();
registry.register("embedder", "openai", new OpenAIEmbedder());
const output = await runPipeline({
loader: "pdf",
retriever: "pinecone",
llm: "openai",
query: "How does this work?",
});
4. GitHub + NPM Automation for ML Pipelines
Use Case: You want a release blog post + versioned package published automatically:
- Commit code
- Push to
main - GitHub Action triggers:
- Semantic release
- CHANGELOG update
- Blog post generation
- NPM publish
Benefits
- Pluggable components via clean interfaces
- CLI + programmatic access for flexible DX
- CI-validated plugin contract enforcement
- Docs-first developer onboarding
- Production-ready for real ML teams
Want to contribute your use case? PRs welcome on GitHub.