Real-World Use Cases
Real-World Applications of RAG Pipeline Utilsβ
This project goes beyond traditional RAG tools β itβs a developer-focused modular framework. Here's how itβs used:
1. Customizable LLM Workflowsβ
Use Case: A team wants to test three different retrievers (Pinecone, Weaviate, Redis) and switch LLMs dynamically during eval.
rag-utils ingest sample.pdf --retriever pinecone --llm openai
2. Plugin-Based Evaluation Benchmarksβ
Use Case: You want to run BLEU/ROUGE scoring across prompt templates or documents using CLI:
rag-utils evaluate --dataset tests/eval.json --llm anthropic
3. Internal LLM System for SaaSβ
Use Case: Embed RAG processing into a backend:
import { PluginRegistry, runPipeline } from 'rag-pipeline-utils';
const registry = new PluginRegistry();
registry.register('embedder', 'openai', new OpenAIEmbedder());
const output = await runPipeline({
loader: 'pdf',
retriever: 'pinecone',
llm: 'openai',
query: 'How does this work?'
});
4. GitHub + NPM Automation for ML Pipelinesβ
Use Case: You want a release blog post + versioned package published automatically:
- Commit code
- Push to
main
- GitHub Action triggers:
- Semantic release
- CHANGELOG update
- Blog post generation
- NPM publish
Benefitsβ
- Pluggable components via clean interfaces
- CLI + programmatic access for flexible DX
- CI-validated plugin contract enforcement
- Docs-first developer onboarding
- Production-ready for real ML teams
Want to contribute your use case? PRs welcome on GitHub.